织梦CMS - 轻松建站从此开始!

南京考易达教育

南京考易达:高考数学中曲线本身的对称问题

时间:2018-07-25 10:15来源:南京考易达 作者:南京考易达 点击:
曲线本身的对称问题 曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐

 

  曲线本身的对称问题
  
  曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。
  
  例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。
  
  例3 方程xy2-x2y=2x所表示的曲线:
  
  A、关于y轴对称 B、关于直线x+y=0对称
  
  C、关于原点对称 D、关于直线x-y=0对称
  
  解:在方程中以-x换x,同时以-y换y得
  
  (-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变
  
  `曲线关于原点对称。
  
  函数图象本身关于直线和点的对称问题我们有如下几个重要结论:
  
  1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。
  
  这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。
  
  例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或 f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:
  
  2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x= 对称。
  
  我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点 A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))
  
  ∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上
  
  `图象关于M(2,0)成中心对称。
  
  若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:
  
  3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

(责任编辑:admin)
织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
栏目列表
推荐内容